OCR A453 Programming Project
Controlled Assessment Material 2
Notes For Task 3
· Ask the user for the class name. In the solution I have fixed this to 4TC for testing purposes. This is the text file produced in Task 2.
· Readfile() - Read in ALL names and scores for that class. (Now stored in results)
· List names in file() - Go through all the results and create a dictionary of scores with the student’s name as the key. As dictionaries do not allow duplicate keys, at the end of the process the keys that you have is a list of pupil names without duplicates. The dictionary itself isn’t used for anything other than to provide a unique list of student names.
· Strip old results() - For each ‘key name’, go through the results list from back to front (the newest scores are at the end of the file). Keep a count each time a result is found for the student being searched for. After a 3rd result has been found for the student, delete any further ones found from the results list. The list ‘results’ now contains a maximum of 3 results for each student.
· High score and average() – For each ‘key name’ find that pupil’s highest score and calculate their average score. Add the name and highest score to the GLOBAL list ‘high_score_list’ and add the name and average score to another GLOBAL list ‘ave_score_list’.
· Print the information in the format required by the class teacher.
· Alpha highest score high to low() – Sort the ‘high score list’ by name, alphabetically. Print suitable headings and then print the list.
· Highest score high to low() - Sort the ‘high score list’ by high score. Print suitable headings and then print the list in reverse order.
· Average score high to low() - Sort the ‘ave score list’ by average score. Print suitable headings and then print the list in reverse order.

#---
Name: A453 Programming Project Sept 2014
CA Material 2 - Task 3
Purpose: Simple Maths quiz
#
Author: Andrew Baker
#
Created: 24/02/2015
Copyright: (c) Andrew Baker 2015
Licence: <your licence>
#---#--
def readfile(classname):

 filename=classname+".txt"
 file = open(filename,"a+")
 file.seek(0) # to make sure the pointer is at the beginning
 results=file.readlines()

 file.close()
 return results

#--
def list_names_in_file():
 # Get names in class who have results

 for x in results:
 (name,score)=x.split(":") #takes every result and splits the name and score into the variables name and score
 res_dict[name]=score # name is the key in the dictionary res_dict[]
 # keys are unique. If it reads in a result for the same person, the score is overwritten
 # the net result is the keys provide a list of names, without duplication

#--
def strip_old_results():
 for i in res_dict.keys(): #go through all names
 count=0
 for y in reversed(results): #work backwards through results file
 (name,score)=y.split(":") #takes every result and splits the name and score into the variables name and score
 if (i)==name: # compares the key name with the name read in from the results file
 count +=1 # keeps a count of how many results it has read in (working from the back of the file) for the key_name
 if count>3: # delete from results if the key_name has more than 3 results
 results.remove(y)
#results now contains a maximum of 3 results for each pupil. They are their latest scores

#--
def high_score_and_average():
 for i in res_dict: #go through all key_names
 high_score=0
 total=0
 count=0
for each key_name find their score in the results
 for x in results: # go through every result
 (name,score)=x.split(":") #takes every result and splits the name and score into the variables name and score
 if (i)==name: # compares the key name with the name read in from the results file
 count +=1 #keeps a count of the number of scores for that student
 total=total+int(score) #this is a running total of the scores that have been read in for that student
 if (int(score)>int(high_score)): # if the score read in is great than the highest score so far for the student, make this the new high score
 high_score=int(score)
 ave=total/count #calulate the average score for the student
 high_score_list.append((i,high_score)) #add this student's name and highest score to the GLOBAL high_score list
 ave_score_list.append((i,ave)) #add this student's name and average score to the GLOBAL ave_score list
[bookmark: _GoBack]
#--
def alpha_highest_score_high_to_low():
 high_score_list.sort(key=lambda s: s[0]) #sorts the GLOBAL high score list using the student name as the key

 print() #prints a blank line
 print("Student's Highest Score") #prints a heading
 print("Name Score") #prints a heading

 #prints the list
 for name, score in (high_score_list):
 print("{} {}".format(name,score))
#--
def highest_score_high_to_low():
 high_score_list.sort(key=lambda s: s[1]) #sorts the GLOBAL high score list using the highest score as the key

 print() #prints a blank line
 print("Highest Score") #prints a heading
 print("Score Name") #prints a heading

 #prints the list
 for name, score in reversed(high_score_list):
 print(" {} {}".format(score,name))
#--
def average_score_high_to_low():
 ave_score_list.sort(key=lambda s: s[1]) #sorts the GLOBAL average score list using the average score as the key

 print() #prints a blank line
 print("Average Score") #prints a heading
 print("Ave Score Name") #prints a heading

 #prints the list
 for name, ave in reversed(ave_score_list):
 print(" {:.2f} {}".format(ave,name))

#--
classname="4TC" #input("Which class do you want to see?")
results=readfile(classname) #Read in ALL the results for the class

#Define Globally, Dictionary and Lists
res_dict={}
high_score_list=[]
ave_score_list=[]

#Analyse Data
list_names_in_file()
strip_old_results()
high_score_and_average()

#Outputs
alpha_highest_score_high_to_low()
highest_score_high_to_low()
average_score_high_to_low()

image1.gif

